Thermodynamics

1. Assertion (A): The enthalpy of formation of $H_2O(\lambda)$ is greater than of H_2O (g) in magnitude.

Reason (R): Enthalpy change is negative for the condensation reaction, $H_2O(g) \rightarrow H_2O(\lambda)$.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 2. Assertion (A): Heat of neutralisation of perchloric acid, HClO₄, with NaOH is same as that of HCl with NaOH.

Reason (R): Both HCl and HClO₄ are strong acids

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **3.** Assertion (A): In the following reaction : $C(s) + O_2(g) \rightarrow CO_2(g)$; $\Delta H = \Delta U RT$

Reason (R): ΔH is related to ΔU by the equation, $\Delta H = \Delta U - \Delta n_g$ RT.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **4. Assertion (A):** Entropy change in reversible adiabatic expansion of an ideal gas is zero.

Reason (R): The increase in entropy due to volume increase just compensate the decrease in entropy due to fall in temperature.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **5. Assertion (A):** Enthalpy and entropy of any elementary substance in the standard states are taken as zero.

Reason (R): At absolute zero, entropy of the perfectly crystalline substance is not equal to zero.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **6. Assertion (A):** Decrease of free energy during the process under constant temperature and pressure provides a measure of its spontaneity.

Reason (R): A spontaneous change must have +ve sign of ΔS_{system} .

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **7. Assertion (A):** A reaction which is spontaneous and accompanied by decrease of randomness must be exothermic.

Reason (R): All exothermic reactions are accompanied by decrease of randomness.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

- **8. Assertion (A):** Work is a path function which is expressed in joule.
 - **Reason (R):** Work appears only at the boundary of the system.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- 9. Assertion (A): The expansion of a gas into an evacuated space takes place spontaneously.
 - **Reason (R):** A process in which all steps cannot be retraced by themselves is called a spontaneous process.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- 10. Assertion (A): $\Delta G = \Delta G^{\circ} + 2.303 RT \log_{10} Q$, where Q is reaction quotient.
 - **REASON (R):** Q may be greater or lesser than K otherwise equal to K if $\Delta G = 0$.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- 11. ASSERTION (A): A process is said to be adiabatic if the system does not exchange heat with surroundings.

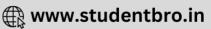
REASON (R): It does not involve increase or decrease in temperature of the system.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **12. ASSERTION (A):** For an isothermal expansion dT = 0.

REASON (R): Work done in reversible expansion at constant temperature

$$W = -2.303nRT log \left(\frac{P_1}{P_2}\right)^{\frac{1}{2}}$$

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **13. ASSERTION (A):** T, P and V are state variables or state functions.


REASON (R): Their values depends on the state of the system and how it is reached.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **14. ASSERTION (A):** The heat absorbed during the isothermal expansion of an ideal gas against vacuum is zero.

REASON (R): The volume occupied by the molecules of an ideal gas is zero.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false

	ANSWER KEY														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Ans.	1	1	4	1	4	3	3	2	1	2	3	2	3	2	

